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In this letter, we propose a method for the numerical calculations of the femtosecond laser pulse passed
through a subwavelength aperture. The time-dependent laser pulse is decomposed into a series of
monochromatic simple harmonic waves. For the light field of the harmonic wave with a single frequency,
the numerical calculation is made based on the solution of the Green’s integral equation set of the electro-
magnetic waves. Such numerical solution is iterated for all the waves with different frequencies, and all the
numerical solutions are transformed into the light fields in the time domain by inverse Fourier transform.
The light intensity distributions transmitted the subwavelength aperture are calculated and the results
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show the propagation of the light field is along the direction of the medium interface.

OCIS codes: 050.1220, 320.2250, 140.7090.

Near-field optics is a new area which deals with the
propagation of light waves within the region of a sub-
wavelength distance from the medium interfacel’-?, and
it provides the theoretical foundations for the engineer-
ing of the scanning near-field optical microscopy!®l. One
of the important subjects in near-field optics is the
diffraction of light waves through the subwavelength
aperture which is directly associated to the fabrication
of near-field fiber probes and hence has attracted great
attention in the past yearsl*—?l. It is well understood
that laser pulses with ultrashort duration may induce a
lot of new physical phenomena, in its propagation and its
interaction with matter[*=7]. The diffraction of the fem-
tosecond laser pulses through a subwavelength aperture
is the combination of the near-field optics and femtosec-
ond spectroscopy and is promising in opening up new
fields of studies!®-7).

In the studies of near-field optics, two kinds of nu-
merical methods, i.e., the finite-difference time domain
method (FDTD)rS’Q] and the rigorous solutions of Green’s
integral equations!®'!], have been developed. In the
present literature, all the time-dependent problems in
near-field optics are treated with FDTD. The method of
Green’s integral is easier and more expediency when the
near-field light field problems involve irregular bound-
aries. In this letter, we extend the Green’s function
method to solve the subwavelength aperture diffraction
of femtosecond laser pulse. We expand the femtosecond
laser pulse with Gaussian temporal profile as the sum
of a series of harmonic waves. For each of the harmonic
waves, the integral equations on the interface are numeri-
cally discretized into a linear equation set. The solutions
of the linear equation set give the spatial numerical dis-
tribution of the wave field. By Fourier-transforming the
superposition of the wave field solutions of all the single
frequency waves at the same spatial point, the time-
dependent wave field at this spatial point is obtained.
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The results show that the transmitted intensity distribu-
tions in the near-field region produced by femtosecond
laser pulse through a subwavelength aperture are not
symmetric with respect to time any more as the incident
femtosecond laser pulse.

Figure 1 shows the diagram for the propagation of the
light wave at the medium interface. We discuss the one-
dimensional case for simplicity. An s-polarized parallel
light wave E%(r) with a vacuum wavelength A perpen-
dicular to the coordinate plane z = 0 is incident on
the interface of the dielectric media, here r is the posi-
tion vector. The medium interface is an aperture with
length L. To demonstrate the principles of the Green’s
integral method, we suppose the medium surface has a
height distribution z = D(z) in the following theoret-
ical analysis though D(z) may set to be zero for the
diffraction through the aperture. In the left half space,
z > D(z), the relative dielectric constant of medium
e = n? is real, and the right half space, z < D(z),
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Fig. 1. The diagram for the diffraction of a laser pulse
through a subwavelength aperture.
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is vacuum.
[-L/2,L/2].
sumed to be a Gaussian shape in time

The lateral range of the aperture is

The femtosecond laser pulse can be as-
[5.6]

ED(r,t) = Bpe™ (7)ot (1)

where 7 denotes the full width at half-maximum of the
pulse and wp denotes the central frequency of the pulse.
The time-dependent light wave may be regarded as the
superposition of a series of monochromatic components
with different frequencies

EOD(r,) = / ED (r, w)e=tduw, @)

E((r,w) can be simply obtained from the Fourier trans-
form of E((r,t) and the time harmonic form of the light
wave of a single frequency is

E(l) (r’wi)e—iwit = T\/7_1'Eoe_§(wi—wo)2e—iw,‘t. (3)

The electric fields of the waves E(r,w) and E'(r,w) in
the left half-space V' and right half-space V', respectively,
satisfy Helmholtz equation!'?

V2E(r,w;) + kI E(r,w;) =0,

VZEI(I‘,&)Z’) + k?OE'(r,wi) =0,

where kio = |kio| = wiy/fo€o and k; = \/ekip are the
moduli of the wave vectors and here gy and ug are the
vacuum dielectric constant and the magnetic permeabil-
ity, respectively. In the left space, E(r,w;) is the sum of
the incident wave and the scattered wave from the sur-
face. E(r,w;) and E'(r,w;) satisfy the following bound-
ary conditions for the s-polarized waves

E(z,w;) = E[z,D(z)w;] = E'[z, D(z)wi], (5a)

OE(r,w;
F(z,w;) = ’Y[%]ZZDH)(@

=5, L=p (@) (5b)

where E(z,w;) and F(z,w;) are the electric field and
the its derivative at the interface, respectively. D(F)
and D(=) represent, respectively, the surface approach-
ing the interface D(z) from the left and right half-spaces.
2 =@ V), n=(1/9)[D'(2),1], vy = {1+ [D'@)]*}'/,
and D’'(z) represents the derivative of D(x) with re-
spect to z. Applying the Green’s integral theorem to
the Helmhotz equations (4a) and (4b) together with the
above boundary conditions, the electric fields at the
me[c}%l]lm surface satisfy the following integral equation
sett™H:

z>D(z), (reV), (4a)

z < D(z), (re V'), (4b)

+oo
E(z,w;) = ED [z, D(x)w] + é/ dz’
/ BG 12 ’ % _ ! .,
{E(w,w,)[@—D(z‘)axl GF(x,w,)}, (6a)
L[t (., . 0Go
=) dz {E (x,w,)[azl
~D/(&) 3] - GoF (&' ) } =0, (6b)

where Gy = Go(z,2',w;) and G = G(z,z',w;) are, re-
spectively, the one-dimensional Green’s functions in the
right and left half-spaces:

Go(r,t’,w;) = iﬂHél)(koll‘ -r'|), (7a)

G(r,r',w;) = inHY {[5(w)]1/2k0|r - r'|} , (7b)

with Hél) being the zero-order Hankel function of the
first kind. Accordingly, the electric field E'(r,w;) in the
right half-space can be written as

1 [t 0Go

1 ) = 1] i A0

E'(r,w;) el dz {E (2',wi)] 52
—D'(z')aaf?]—GOF(w',wi)}, rev. (8

For numerical solutions to be implemented, the integral
equation set of Eq. (6) can be numerically discretized into

the following linear equation set10-11;

A+1 B E E®
A0 _1 B(t»] [F]=2[ 0 ] (9)

where I is the identity matrix, and the (m,n) elements
of the N x N index matrices A, B are given by

_ ivEko Az D' (2,)(Zm — Tn) — [D(Zm) — D(zy)]

A 2 {(&m —2n)® + [D(zm) — D(za)]?}/?

x H (Veko{ (m — on)? + [D(@m) — D(@)"}'12),

(m # n),
-A "
Amn = 550" (zn), (m =) (10a)
Bun = (iAz)2)HS) (Veko{ (Tm — Tn)>
+[D(zm) — D(zn)I’}/?), (m#n),
Bpn = (iAz/2)HSV (VekoyAz/2e), (m =n), (10b)

where Az is the step length. The elements for matrices
A and B(©) are also given by the above equations but
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with the relative dielectric constant € = 1 in vacuum in-
stead of €. The elements E,, and F;, of the vectors E and
F are, respectively, the disretized electric field and its
derivative. In the practical numerical performance, the
numerical distributions of height D(z) and the deriva-
tives D'(z) and D"(z) are all zero. The number N of
the sampling points is 1000 and that of frequency is 101.
The refractive index n = /¢ of the medium is 1.532
for glass, and wp = 27& (Ao = 800 nm). The relation

H,Sl)(Z) = J,(Z) + iY,(Z) is used, with J, is Bessel
function and Y, Neumann function.
After the index matrices with the elements Ay, Bmn

and Agg)n, B,(,% are constructed, the linear equation
set is solved with the Gaussian elimination method['3],
which gives the numerical distributions of E(z,w;) and
its derivative F'(x,w;) at the interface. The numerical
distributions of transmitted light field E'(r,w;) at fre-
quency w; are thereafter calculated based on Eq. (8).

The above calculation process is repeated for the light
fields of all the frequency values of w;. In the frequency
domain, discretization is made equidistantly with Ny
points and the step size Aw; = Awp/(N; — 1) in the
range [wp — A#wl,wo + AAZ‘“], where size Awg of the fre-
quency range is so adjusted according to the width of the
spectrum of the pulse that the contribution of component
of the light wave outside this range can be neglected. The
half-width of the spectrum is inversely proportional to
7, and so Awyg is adjusted in our calculation, N; is set to
be 101.

With the spatial distributions of transmitted light field
E'(r,w) of all frequency values obtained, we can perform
the digital inverse Fourier transform of E'(r,w) with re-
spect to w at specific spatial point r, from which the
time-dependent light field E’(r,t) at this point is ob-
tained. Applying this transform to all the spatial points,
we obtain the light field at any point r and at any time ¢.
This enables us to understand either how the light field
at a point r varies with time or how it behaves spatially
at any moment. This is obviously important for the un-
derstanding of the construction and propagation of the
light field of femtosecond pulse.

We calculate the light field distributions on the surface
and transmitted in the vacuum half space with different
half-widths of the laser pulses and different widths of
the aperture. In Figs. 2(a) — (d) the transmitted light
intensity distributions versus z are shown at the time
instants which are symmetric with respect to the central
time of the incident pulse and at the different distances
from the interface. The width of laser pulse 7 is 20 fs
and size of the aperture is L = 50 nm. The time and
the distance corresponding to each curve are given in the
figures. We can see from the curves in each figure that
before the central time ¢ = 0 of the laser pulse, i.e., when
t < 0, the light intensity of the central part is larger than
that when ¢ > 0, while the intensity away from the cen-
ter, for ¢ < 0 is smaller than that for ¢ > 0. This is the
apparent feature of the light intensity propagating along
the direction parallel medium interface from the center
of the aperture. Comparing the results of Figs. 2(b) and
(d), we may see that in the near-field region, the larger is
the distance from the medium interface, the larger is the
intensity in the part away from the center of the aperture
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Fig. 2. The transmitted intensity distributions at the dis-

tance of 80 nm for (a) and (b), and 160 nm for (c) and (d).
The width of the aperture is 50 nm. The pulse width is
T =20 fs.
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Fig. 3. The transmitted intensity distributions of a laser

pulse with 7 = 10 fs at the distance of 80 nm and at time (a)
t = =£12 fs and (b) t = £18 fs.
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Fig. 4. The intensity curves of a laser pulse with 7 = 20 fs at
the distance of 160 nm with the aperture sizes (a) 25 nm, (b)
50 nm and at time ¢t = £12 fs.

and the smaller in the part near the center for time ¢ > 0.

Figures 3(a) and (b) give the transmitted intensity dis-
tributions at the distance of 80 nm with 7 = 10 fs and
at the time t = +12 fs and ¢t = £18 fs, respectively. The
size of the aperture is also 50 nm. We can see that the
intensity distribution and the propagation feature of the
light is about the same as that in Fig. 2.

Figures 4(a) and (b) show the intensity distributions
at the distance of 160 nm for 7 = 20 fs with the aper-
ture sizes 25 and 50 nm, respectively. The time for the
curves in the figures are both t = +£12 fs. We may see
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that though the absolute values of the intensity distri-
bution is greater for larger aperture, the relative values
in the parts away from the center of the aperture for
smaller aperture are obviously larger. This is the ev-
idence that smaller aperture excites relatively stronger
evanescent waves that propagate in the direction along
the medium interface and that is bound to the near-field
of the interface.

To conclude, by using the solution of the Green’s in-
tegral equation of electromagnetic waves at the medium
boundaries, this paper proposes the method for the nu-
merical calculation of the intensity distribution of the
femtosecond laser pulse propagating through the sub-
wavelength apertures. The preliminary results are ob-
tained which shows how the light field propagates along
the direction of the interface. We believe that the method
and results are promising in the understanding of the
process of the constructions and the propagations of the
evanescent wave in area of the near-field optics.

X. Ren’s e-mail address is renrxr@yahoo.com.cn, and
C. Cheng’s e-mail address is chengchuanfu@yahoo.com.
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